Sub-angstrom conformational changes of a single molecule captured by AFM variance analysis.
نویسندگان
چکیده
A system's equilibrium variance can be analyzed to probe its underlying dynamics at higher resolution. Here, using single-molecule atomic-force microscope techniques, we show how the variance in the length of a single dextran molecule can be used to establish thermodynamic equilibrium and to detect conformational changes not directly observable with other methods. Dextran is comprised of a chain of pyranose rings that each undergoes an Angstrom-scale transition from a chair to boat conformation under a stretching force. Our analysis of the variance of the molecule's fluctuations verifies equilibrium throughout the force-extension curve, consistent with the expected thermodynamic ensemble. This validates further analysis of the variance in the transition region, which reveals an intermediate conformation between the chair and the boat on the sub-Angstrom scale. Our test of thermal equilibrium as well as our variance analysis can be readily extended to a wide variety of molecules, including proteins.
منابع مشابه
Protein conformational dynamics probed by single-molecule electron transfer.
Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over...
متن کاملImaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy
The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivit...
متن کاملThe micro-mechanics of single molecules studied with atomic force microscopy.
The atomic force microscope (AFM) in its force-measuring mode is capable of effecting displacements on an angstrom scale (10 A = 1 nm) and measuring forces of a few piconewtons. Recent experiments have applied AFM techniques to study the mechanical properties of single biological polymers. These properties contribute to the function of many proteins exposed to mechanical strain, including compo...
متن کاملProbing nanotube-nanopore interactions.
We demonstrate a new nanoscale system consisting of a nanotube threaded through a nanopore in aqueous solution. Its electrical and mechanical properties are sensitive to experimentally controllable conformational changes on sub-Angstrom length scales. Ionic current transport through a nanopore is significantly suppressed by the threading nanotube and the mechanical interactions between the nano...
متن کاملSingle-molecule force spectroscopy approach to enzyme catalysis.
Enzyme catalysis has been traditionally studied using a diverse set of techniques such as bulk biochemistry, x-ray crystallography, and NMR. Recently, single-molecule force spectroscopy by atomic force microscopy has been used as a new tool to study the catalytic properties of an enzyme. In this approach, a mechanical force ranging up to hundreds of piconewtons is applied to the substrate of an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 90 10 شماره
صفحات -
تاریخ انتشار 2006